The largest proper regular ideal of $S(X)$
نویسندگان
چکیده
منابع مشابه
Linearization of Regular Proper Groupoids
Let G be a Lie groupoid over M such that the target-source map from G to M ×M is proper. We show that, if O is an orbit of finite type (i.e. which admits a proper function with finitely many critical points), then the restriction G|U of G to some neighborhood U of O in M is isomorphic to a similar restriction of the action groupoid for the linear action of the transitive groupoid G|O on the nor...
متن کاملOn the largest eigenvalue of non-regular graphs
We study the spectral radius of connected non-regular graphs. Let λ1(n,Δ) be the maximum spectral radius among all connected non-regular graphs with n vertices and maximum degree Δ. We prove that Δ− λ1(n,Δ)=Θ(Δ/n). This improves two recent results by Stevanović and Zhang, respectively. © 2007 Elsevier Inc. All rights reserved.
متن کاملA note on the largest eigenvalue of non-regular graphs
The spectral radius of connected non-regular graphs is considered. Let λ1 be the largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree ∆. By studying the λ1-extremal graphs, it is proved that if G is non-regular and connected, then ∆− λ1 > ∆+ 1 n(3n+∆− 8) . This improves the recent results by B.L. Liu et al. AMS subject classifications. 05C50, 15A48.
متن کاملThe MPI/SX Collectives Verification Library
c © 2006 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher ment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1996
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1996.127271